Stepwise Embryonic Toxicity of Silver Nanoparticles on Oryzias latipes
نویسندگان
چکیده
The developmental toxicity of silver nanoparticles (AgNPs) was investigated following exposure of Oryzias latipes (medaka) embryos to 0.1-1 mg/L of homogeneously dispersed AgNPs for 14 days. During this period, developmental endpoints, including lethality, heart rate, and hatching rate, were evaluated by microscopy for different stages of medaka embryonic development. To compare toxic sensitivity, acute adult toxicity was assessed. There was no difference in acute lethal toxicity between embryo and adult medaka. Interestingly, we found that the increase in stepwise toxicity was dependent on the developmental stage of the embryo. Lethal embryonic toxicity increased from exposure days 1 to 3 and exposure days 5 to 8, whereas there was no change from exposure days 3 to 5. In addition, 7 d exposure to 0.8 mg/L AgNPs resulted in significant heart beat retardation in medaka embryos. AgNPs also caused a dose-dependent decrease in the hatching rate and body length of larvae. These results indicate that AgNP exposure causes severe developmental toxicity to medaka embryos and that toxicity levels are enhanced at certain developmental stages, which should be taken into consideration in assessments of metallic NPs toxicity to embryos.
منابع مشابه
Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation.
Silver nanoparticles (AgNPs) have been increasingly commercialized and their release into the environment is imminent. Toxicity of AgNP has been studied with a wide spectrum of organisms, yet the mechanism of toxicity remains largely unknown. This study systematically compared toxicity of 10 AgNPs of different particle diameters and coatings to Japanese medaka (Oryzias latipes) larvae to unders...
متن کاملDistribution of Nanoparticles in the See-through Medaka (Oryzias latipes)
OBJECTIVE Because the environmental fate of manufactured nanoparticles is considered an emerging environmental concern, I used water-suspended fluorescent nanoparticles (solid latex solution) to investigate the distribution of nanoparticles in the eggs and bodies of see-through medaka (Oryzias latipes). RESULTS Particles 39.4-42,000 nm in diameter were adsorbed to the chorion of medaka eggs a...
متن کاملAquatic Toxicity Comparison of Silver Nanoparticles and Silver Nanowires
To better understand the potential ecotoxicological impact of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) released into freshwater environments, the toxicities of these nanomaterials were assessed and compared using Organization for Economic Cooperation and Development (OECD) test guidelines, including a "Daphnia sp., acute immobilization test," "Fish, acute toxicity test," and "f...
متن کاملComparison of TiO2 nanoparticle and graphene-TiO2 nanoparticle composite phototoxicity to Daphnia magna and Oryzias latipes.
With a dramatic rise in complexity, needs of nanotoxicology research go beyond simple forms of nanomaterials. This study compared the phototoxicity of nano-TiO2 and graphene-TiO2 nanocomposite (GNP). GNP was synthesized based on a hydrothermal method, which simultaneously performed the reduction of graphene oxide and nano-TiO2 loading. A series of acute toxicity tests of nano-TiO2, graphene and...
متن کاملChemical, Toxicological, and Microbial Characterization of New Orleans Sediments Following Hurricane Katrina
On August 29, 2005 Hurricane Katrina struck the Gulf Coast and storm surges breached levees flooding much of New Orleans, Louisiana. One month after the storm, sediment was collected and toxicity was tested using Japanese medaka (Oryzias latipes) embryos. Sediments with the highest contaminant levels showed the highest embryonic mortality and most delayed development. However, no sediment cause...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013